enot06: (Default)
[personal profile] enot06
Он еще потом в Иерусалиме будет.
Подробности - дальше. Первые полтора десятка слов вы поймете:
TAU: 24.5.2004 Mikhail Verbitsky, University of Glasgow and Institute of Theoretical and Experimental Physics Moscow

Title: Hyperkaehler Geometry

Abstract
***********

Compact hyperkaehler manifolds are equally relevant in algebraic geometry and differential geometry. From algebraic-geometric point of view, a hyperkaehler manifold is a compact Kaehler manifold equipped with a holomorphic symplectic structure. From differential-geometric point of view, a hyperkaehler
manifold is a Riemannian manifold equipped with a triple of Kaehler structures $I, J, K$ which satisfy the quaternionic relation $IJ = - JI = K$. The interplay between quaternionic and holomorphic symplectic geometry makes it possible to define and study the geometric objects intrinsic to hyperkaehler geometry (vector bundles, subvarieties, Hodge structures). In this aspect, hyperkaehler geometry becomes just as rich and interesting as the complex algebraic geometry.

Profile

enot06: (Default)
enot06

January 2026

S M T W T F S
    123
45 678910
11121314151617
18192021222324
25262728293031

Most Popular Tags

Style Credit

Expand Cut Tags

No cut tags
Page generated Jan. 16th, 2026 10:46 pm
Powered by Dreamwidth Studios